Object Scene Flow for Autonomous Vehicles

Moritz Menze1, Andreas Geiger2
1Leibniz Universität Hannover. 2MPI Tübingen.

This paper proposes a novel model and dataset for 3D scene flow estimation with an application to autonomous driving. Taking advantage of the fact that outdoor scenes often decompose into a small number of independently moving objects, we represent each element in the scene by its rigid motion parameters and each superpixel by a 3D plane as well as an index to the corresponding object. This minimal representation increases robustness and leads to a discrete-continuous CRF where the data term decomposes into pairwise potentials between superpixels and objects. Moreover, our model intrinsically segments the scene into its constituting dynamic components. We demonstrate the performance of our model on existing benchmarks as well as a novel realistic dataset with scene flow ground truth. We obtain this dataset by annotating 400 dynamic scenes from the KITTI raw data collection using detailed 3D CAD models for all vehicles in motion. Our experiments also reveal novel challenges which cannot be handled by existing methods.

Model: We focus on the classical scene flow setting where the input is given by two consecutive stereo image pairs of a calibrated camera and the task is to determine the 3D location and 3D flow of each pixel in a reference frame. Following the idea of piecewise-rigid shape and motion [10], a slanted-plane model is used, i.e., we assume that the 3D structure of the scene can be approximated by a set of piecewise planar superpixels. As opposed to existing works, we assume a finite number of rigidly moving objects in the scene. Our goal is to recover this decomposition jointly with the shape of the superpixels and the motion of the objects. We specify the problem in terms of a discrete-continuous CRF

\[
E(s, o) = \sum_{i \in S} \phi_{\text{data}}(s_i, o) + \sum_{i \sim j} \psi_{\text{smoothness}}(s_i, s_j)
\]

where \(s_i\) determines the shape and associated object of superpixel \(i \in S\), and \(o\) are the rigid motion parameters of all objects in the scene.

Dataset: Currently there exists no realistic benchmark dataset providing dynamic objects and ground truth for the evaluation of scene flow or optical flow. Therefore, in this paper, we take advantage of the KITTI raw data [5] to create a realistic and challenging scene flow benchmark with independently moving objects and annotated ground truth, comprising 200 training and 200 test scenes in total. The process of ground truth generation is especially challenging in the presence of individually moving objects since they cannot be easily recovered from laser scanner data alone due to the rolling shutter of the Velodyne and the low framerate (10 fps). Our annotation workflow consists of two major steps: First, we recover the static background of the scene by removing all dynamic objects and compensating for the vehicle’s egomotion. Second, we re-insert the dynamic objects by fitting detailed CAD models to the point clouds in each frame. We make our dataset and evaluation available as part of the KITTI benchmark.

Results: As input to our method, we leverage sparse optical flow from feature matches [3] and SGM disparity maps [6] for both rectified frames. We obtain superpixels using StereoSLIC [11] and initialize the rigid motion parameters of all objects in the scene by greedily extracting rigid body motion hypotheses using the 3-point RANSAC algorithm. By reasoning jointly about the decomposition of the scene into its constituent objects as well as the geometry and motion of all objects in the scene, the proposed model is able to produce accurate dense 3D scene flow estimates, comparing favorably with respect to current state-of-the-art as illustrated in Table 1. Our method also performs on par with the leading entries on the original static KITTI dataset [4] as well as on the Sphere sequence of Huguet et al. [8].

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
 & \text{bg} & \text{fg} & \text{bg+fg} \\
\hline
Huguet [8] & 67.69 & 64.03 & 67.08 \\
GCSF [2] & 59.22 & 59.11 & 53.95 \\
SGM [6] + LDOF [1] & 43.99 & 44.77 & 44.12 \\
Our full model & \textbf{7.01} & \textbf{28.76} & \textbf{10.63} \\
\hline
\end{tabular}
\caption{Quantitative Results on the Proposed Scene Flow Dataset. This table shows scene flow errors in \%, averaged over all 200 test images. We provide separate numbers for the background region (bg), all foreground objects (fg) as well as all pixels in the image (bg+fg).}
\end{table}

References: