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Abstract

How much data do we need to describe a location? We ex-
plore this question in the context of 3D scene reconstructions
created from running structure from motion on large Inter-
net photo collections, where reconstructions can contain
many millions of 3D points. We consider several methods
for computing much more compact representations of such
reconstructions for the task of location recognition, with the
goal of maintaining good performance with very small mod-
els. In particular, we introduce a new method for computing
compact models that takes into account both image-point
relationships and feature distinctiveness, and we show that
this method produces small models that yield better recogni-
tion performance than previous model reduction techniques.

1. Introduction

In recent years, the increasing availability of online tourist
photos has stimulated a line of work that utilizes structure-
from-motion techniques to construct large-scale databases
of images and 3D point clouds [9, 1], for a variety of appli-
cations, including location recognition [10, 2, 3, 7, 4]. These
location recognition methods often directly match features
(such as SIFT [5]) in a query image to descriptors associated
with 3D points. These databases of 3D points, however, can
be very large—ranging in size from a few million points
in a single location, to hundreds of millions when multiple
places are considered together [4]. For purposes of modeling
and visualization, the denser the 3D points the better. How-
ever, for other applications, such as recognition, there are
advantages in having fewer points, such as reduced memory
and computation requirements. This brings up an interesting
question: how much data do we need to describe a location?
What is a minimal description of a place?

One way to make this question concrete is to define it as
a visibility covering problem [3, 6]: every possible image
that one could take of the location should see some minimal
number of 3D points stored in the reconstruction. Such a
covering constraint makes it likely that a new image of the
scene will match a sufficient number of 3D points to enable

pose estimation. Based on this idea, prior methods have
used the visibility relationships between images and points
in the database to compute reduced 3D point sets that cover
the database images. However, another important factor is
distinctiveness: in order to ensure accurate matching, one
should select a subset of points that are distinct (rather than
selecting points with very similar appearance). In this paper,
we show that by computing a reduced scene description
that takes into account both coverage and distinctiveness,
one can compute very compact models that maintain good
recognition performance.

We incorporate these considerations into a new point se-
lection algorithm that predicts how well new images will be
recognized using a probabilistic approach. We evaluate our
algorithm on several standard location recognition bench-
marks, and show that our computed scene representations
consistently yield higher recognition performance compared
to previous model reduction techniques.

2. Computing Minimal Point Sets

We begin by running structure from motion (SfM) to
reconstruct one or more scenes that form a database for use
in recognizing and posing new images [1]. The result of
running SfM on an image set I of size m is a 3D point
set P of size n, (typically n � m), as well as a visibility
matrix M of size m× n defining the visibility relationships
between images and points, where Mij = 1 if point Pj

is visible in image Ii in the reconstructed 3D model, and
Mij = 0 otherwise. Our goal is to compute a more compact
database with a much smaller set of points P ′ ⊂ P , such that
P ′ captures as much of the information in the full model as
possible. In particular, we wish to be able to correctly register
as many new query images to the subset P ′ as possible.

K-cover algorithm. The prior work of Li et al. [3] formu-
late this as a K-cover (KC) problem on the visibility graph G:
select a minimum subset of points such that each database
image sees at least K points in the subset. Finding such a
minimum set is a combinatorially hard problem, and so they
use a greedy algorithm that starts with the empty set, and
incrementally adds the next point Pj that maximizes the gain
in coverage achieved by adding Pj to the current set P ′.

1



2.1. Appearance-aware point set selection

In order to increase distinctiveness and the probability of
query features matching to the correct database point, we
select points that are far away from each other in descriptor
space. Like Li et al. [3], we use agreedy selection algorithm
that adds points to P ′ sequentially, and so when computing
the gain of a point Pj under consideration, we implement
this strategy by down-weighting a point’s gain according to
its minimum distance to the current set of selected points P ′.

Thus, the point set selected by this method (which we
call KCD, or “K-cover with distinctiveness”) is “sparser” in
descriptor space, which will tend to decrease the rate of false
matches in the feature matching phase of the recognition
pipeline. We use this appearance-aware selection method to
seed our probabilistic point selection algorithm, which we
describe next.

2.2. Probabilistic K-cover algorithm

Using our KCD algorithm, we can select an initial cov-
ering set of points. This allows us to bootstrap a second,
probabilistic point selection method (called KCP). Rather
than treating the visibility matrix as binary, our probabilis-
tic approach treats this matrix as a set of noisy observa-
tions of visibility, and selects a small number of additional
points to add to P ′ such that the number of images that sat-
isfy Pr(vi,P′ ≥ K) ≥ pmin is as large as possible. That
is, unlike the K-cover algorithm, which seeks to combi-
natorially “cover” the images at least K times, we set a
minimum probability value pmin and our goal is to achieve
Pr(vi,P′ ≥ K) ≥ pmin for each image Ii. Like the K-cover
algorithm, we use a greedy approach, but choosing the point
Pj∗ that maximizes expected gain.

3. Experiments
We evaluate on the Dubrovnik dataset of Li et al. [3],

the Aachen dataset of Sattler et al. [8], and the much larger
Landmarks dataset [4]. We evaluate three approaches to
computing minimal scene descriptions: the K-cover algo-
rithm (KC) [3], our initial point set selection algorithm only
(KCD), and our full approach (KCP). All methods output a
list of points to keep in the original 3D point cloud database.
We use each subset of points to construct a reduced database,
and use the algorithm of [4] to register the query images
for each dataset. We record the percentage of successfully
registered images and use it as a measure of how well the
point set represents the original database in Table 3.

In all datasets, KCD improves the performance compared
to the K-cover algorithm for nearly all values of K. The
improvement is especially significant when K is low (and
hence the number of selected points is small). Our full
approach (KCP) consistently outperforms the K-cover al-
gorithm, and further improves on the gains achieved by our

Dubrovnik Dataset [3]
# query images: 800, registered by full set: 99.50%
K 12 (9) 20 (12) 30 (20) 50 (35)

# points 5,788 10,349 17,241 31,752
% points 0.31% 0.55% 0.91% 1.68%

KC 58.00% 77.06% 86.00% 91.81%
KCD 62.88% 78.88% 87.38% 92.50%
KCP 64.25% 79.13% 87.25% 93.38%

Aachen Dataset [8]
# query images: 369, registered by full set: 88.08%
K 30 (20) 50 (32) 80 (52) 100 (65)

# points 13,299 23,675 40,377 52,161
% points 0.67% 1.20% 2.04% 2.63%

KC 50.95% 62.06% 66.40% 71.27%
KCD 54.20% 63.14% 69.38% 72.36%
KCP 56.37% 64.23% 70.19% 73.98%

Landmarks Dataset [4]
# query images: 10,000, registered by full set: 94.33%
K 6 (4) 9 (6) 12 (9) 20 (12)

# points 140,306 222,161 311,035 571,864
% points 0.37% 0.58% 0.81% 1.50%

KC 44.84% 59.86% 69.56% 81.06%
KCD 45.45% 61.26% 70.59% 81.04%
KCP 45.90% 61.50% 71.87% 81.45%

Table 1. Registration performance on various datasets. For com-
parison, we also show the performance of [4] using the full set of
input points.

KCD algorithm.
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